- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Nikseresht, Fateme (3)
-
Campbell, Bradford (2)
-
Gao, Jiechao (2)
-
Aldeer, Murtadha (1)
-
Billah, Md_Fazlay_Rabbi Masum (1)
-
Campbell, Brad (1)
-
Chowdhury, Tahiya (1)
-
Haynes, Amber (1)
-
Heydarian, Arsalan (1)
-
Ortiz, Jorge (1)
-
Rajan, Viswajith Govinda (1)
-
Routh, Tushar (1)
-
Saoda, Nurani (1)
-
Varnosfaderani, Mahsa Pahlavikhah (1)
-
Wu, Tong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nikseresht, Fateme; Campbell, Bradford (, ACM)
-
Wu, Tong; Aldeer, Murtadha; Chowdhury, Tahiya; Haynes, Amber; Nikseresht, Fateme; Varnosfaderani, Mahsa Pahlavikhah; Gao, Jiechao; Heydarian, Arsalan; Campbell, Brad; Ortiz, Jorge (, BuildSys '21: Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation)Time-series data gathered from smart spaces hide user's personal information that may arise privacy concerns. However, these data are needed to enable desired services. In this paper, we propose a privacy preserving framework based on Generative Adversarial Networks (GAN) that supports sensor-based applications while preserving the user identity. Experiments with two datasets show that the proposed model can reduce the inference of the user's identity while inferring the occupancy with a high level of accuracy.more » « less
An official website of the United States government
